PRODUCT SPECIFICATION | Doc. Number: | |-----------------------------| | ☐ Tentative Specification | | ■ Preliminary Specification | | ☐ Approval Specification | # MODEL NO.: N156DCE SUFFIX: GN2 Rev.C1 | Customer: | | |---|-----------------------| | APPROVED BY | SIGNATURE | | Name / Title Note | | | Please return 1 copy for your c signature and comments. | onfirmation with your | | Approved By | Checked By | Prepared By | |-------------|------------|-------------| | | | | | | | | | | | | ## PRODUCT SPECIFICATION ### **CONTENTS** | 1. GENERAL DESCRIPTION | 4 | |---|----------| | 1.1 OVERVIEW | | | 1.2 GENERAL SPECIFICATIONS | | | 2. MECHANICAL SPECIFICATIONS | 4 | | 2.1 CONNECTOR TYPE | | | 3. ABSOLUTE MAXIMUM RATINGS | | | 3.1 ABSOLUTE RATINGS OF ENVIRONMENT | | | 3.2 ELECTRICAL ABSOLUTE RATINGS | | | 3.2.1 TFT LCD MODULE | | | 4. ELECTRICAL SPECIFICATIONS | <u> </u> | | 4.1 FUNCTION BLOCK DIAGRAM | 7 | | 4.2. INTERFACE CONNECTIONS | | | 4.3 ELECTRICAL CHARACTERISTICS | | | 4.3.1 LCD ELETRONICS SPECIFICATION | | | 4.3.2 LED CONVERTER SPECIFICATION | | | 4.3.3 BACKLIGHT UNIT | | | 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS | | | 4.4.1 ELECTRICAL SPECIFICATIONS | | | 4.4.2 COLOR DATA INPUT ASSIGNMENT | | | 4.5 DISPLAY TIMING SPECIFICATIONS | | | 4.6 POWER ON/OFF SEQUENCE | | | 5. OPTICAL CHARACTERISTICS | | | 5.1 TEST CONDITIONS | | | 5.2 OPTICAL SPECIFICATIONS | | | 6. RELIABILITY TEST ITEM | | | 7. PACKING | | | 7.1 MODULE LABEL | | | 7.2 CARTON | | | 7.3 PALLET | | | 7.4 UN-PACKAGING METHOD | | | 8. PRECAUTIONS | | | 8.1 HANDLING PRECAUTIONS | | | 8.2 STORAGE PRECAUTIONS | | | 8.3 OPERATION PRECAUTIONS | | | Appendix. EDID DATA STRUCTURE | | | Appendix. OUTLINE DRAWING | | | Appendix. SYSTEM COVER DESIGN NOTICE | | | Appendix. LCD MODULE HANDLING MANUAL | 43 | ### PRODUCT SPECIFICATION #### **REVISION HISTORY** | Version | Date | Page | Description | | |---------|--------------|------|--------------------------------|--| | 1.0 | Sep. 6, 2017 | All | Spec Ver.1.0 was first issued. | | ### PRODUCT SPECIFICATION #### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW N156DCE-GN2 is a 15.6" TFT Liquid Crystal Display NB module with LED Backlight unit and 40 pins eDP interface. This module supports 3840 x 2160 UHD mode and can display 16,777,216 colors. #### 1.2 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | |-------------------|---|-------|------| | Screen Size | 15.6" diagonal | - | - | | Driver Element | a-si TFT active matrix | - | - | | Pixel Number | 3840 x R.G.B. x 2160 | pixel | - | | Pixel Pitch | 0.2988 (H) x 0.2988 (V) | mm | - | | Pixel Arrangement | RGB vertical stripe | - | - | | Display Colors | 16,777,216 | color | - | | Transmissive Mode | Normally black | - | - | | Surface Treatment | Anti-Glare(3H) | - | - | | Color Gamut | Adobe 100% | NTSC | - | | Luminance, White | 600 | Cd/m2 | - | | Power Consumption | Total (13.28)W (Max.) @ Cell (1.65)W (Max.), BL (11.63)W (Max.) | | (1) | Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = $25 \pm 2 \,^{\circ}\text{C}$, whereas Mosaic pattern is displayed. #### 2. MECHANICAL SPECIFICATIONS | | Item | Min. | Тур. | Max. | Unit | Note | | |-------------|----------------|--------|--------|--------|------|--------|--| | | Horizontal (H) | 350.36 | 350.66 | 350.96 | mm | | | | Module Size | Vertical (V) | 216.82 | 217.32 | 217.82 | mm | (1)(2) | | | | Thickness (T) | - | 2.45 | 2.60 | mm | | | | Bezel Area | Horizontal | 350.36 | 350.66 | 350.96 | mm | - | | | Dezei Alea | Vertical | 205.24 | 205.54 | 205.84 | mm | - | | | Active Area | Horizontal | 344.12 | 344.22 | 344.32 | mm | - | | | Active Area | Vertical | 193.52 | 193.62 | 193.72 | mm | - | | | Glass | CF | 0.25 | 0.3 | 0.35 | mm | - | | | Thickness | TFT | 0.25 | 0.3 | 0.35 | mm | - | | | V | Veight | - | 305 | 320 | g | - | | Note (1) Please refer to the attached drawings for more information of front and back outline dimensions. Note (2) dimensions are measured by caliper #### 2.1 CONNECTOR TYPE Please refer Appendix Outline Drawing for detail design. Connector Part No.: IPEX-20455-040E-12. User's connector Part No: IPEX-20453-040T-03. #### 3. ABSOLUTE MAXIMUM RATINGS #### 3.1 ABSOLUTE RATINGS OF ENVIRONMENT | Item | Symbol | Va | lue | Unit | Note | |-------------------------------|-----------------|------|------|------|----------| | item | Symbol | Min. | Max. | | Note | | Storage Temperature | T _{ST} | -20 | +60 | °C | (1) | | Operating Ambient Temperature | T _{OP} | 0 | +50 | °C | (1), (2) | - Note (1) (a) 90 %RH Max. (Ta < 40 °C). - (b) Wet-bulb temperature should be 39 °C Max. - (c) No condensation. - Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max. #### **Relative Humidity (%RH)** ### PRODUCT SPECIFICATION #### 3.2 ELECTRICAL ABSOLUTE RATINGS #### 3.2.1 TFT LCD MODULE | Item | Symbol | Value | | Unit | Note | |----------------------------------|-----------------|-------|------|-------|-------| | item | Cymbol | Min. | Max. | Offic | 14010 | | Power Supply Voltage | VCCS | -0.3 | +4.0 | V | (1) | | Logic Input Voltage | V _{IN} | -0.3 | +4.0 | V | (1) | | Converter Input Voltage | LED_VCCS | -0.3 | 26 | V | (1) | | Converter Control Signal Voltage | LED_PWM | -0.3 | 5 | V | (1) | | Converter Control Signal Voltage | LED_EN | -0.3 | 5 | V | (1) | Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS". #### 4. ELECTRICAL SPECIFICATIONS #### **4.1 FUNCTION BLOCK DIAGRAM** #### 4.2. INTERFACE CONNECTIONS #### PIN ASSIGNMENT | 1 NC No Connection (Reserved for LCD test) - 2 H_GND High Speed Ground - 3 Lane3_N Complement Signal Link Lane 3 - 4 Lane3_P True Signal Link Lane 3 - 5 H_GND High Speed Ground - 6 Lane2_N Complement Signal Link Lane 2 - 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Auxiliary Channel - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS | Pin | Symbol | Description | Remark | |---|-----|----------|---------------------------------------|--------| | 3 Lane3_N Complement Signal Link Lane 3 - 4 Lane3_P True Signal Link Lane 3 - 5 H_GND High Speed Ground - 6 Lane2_N Complement Signal Link Lane 2 - 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 20 VCCS | 1 | NC | No Connection (Reserved for LCD test) | - | | 4 Lane3_P True Signal Link Lane 3 - 5 H_GND High Speed Ground - 6 Lane2_N Complement Signal Link Lane 2 - 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD l | 2 | H_GND | High Speed Ground | - | | 5 H_GND High Speed Ground - 6 Lane2_N Complement Signal Link Lane 2 - 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD | 3 | Lane3_N | Complement Signal Link Lane 3 | - | | 6 Lane2_N Complement Signal Link Lane 2 - 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N
Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC < | 4 | Lane3_P | True Signal Link Lane 3 | - | | 7 Lane2_P True Signal Link Lane 2 - 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND | 5 | H_GND | 9 1 | - | | 8 H_GND High Speed Ground - 9 Lane1_N Complement Signal Link Lane 1 - 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 6 | Lane2_N | Complement Signal Link Lane 2 | - | | 9 Lane1_N Complement Signal Link Lane 1 | 7 | Lane2_P | True Signal Link Lane 2 | - | | 10 Lane1_P True Signal Link Lane 1 - 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 8 | H_GND | High Speed Ground | - | | 11 H_GND High Speed Ground - 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 9 | Lane1_N | Complement Signal Link Lane 1 | - | | 12 Lane0_N Complement Signal Link Lane 0 - 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 10 | Lane1_P | True Signal Link Lane 1 | - | | 13 Lane0_P True Signal Link Lane 0 - 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 11 | H_GND | High Speed Ground | - | | 14 H_GND High Speed Ground - 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 12 | Lane0_N | Complement Signal Link Lane 0 | - | | 15 AUX_CH_P True Signal Auxiliary Channel - 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 13 | Lane0_P | True Signal Link Lane 0 | - | | 16 AUX_CH_N Complement Signal Auxiliary Channel - 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 14 | H_GND | High Speed Ground | - | | 17 H_GND High Speed Ground - 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 15 | AUX_CH_P | True Signal Auxiliary Channel | - | | 18 VCCS LCD logic and driver power - 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 16 | AUX_CH_N | Complement Signal Auxiliary Channel | - | | 19 VCCS LCD logic and driver power - 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 17 | H_GND | High Speed Ground | - | | 20 VCCS LCD logic and driver power - 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 18 | VCCS | LCD logic and driver power | - | | 21 VCCS LCD logic and driver power - 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 19 | VCCS | LCD logic and driver power | - | | 22 NC No Connection (Reserved for LCD test) - 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 20 | VCCS | LCD logic and driver power | - | | 23 GND LCD logic and driver ground - 24 GND LCD logic and driver ground - | 21 | VCCS | LCD logic and driver power | - | | 24 GND LCD logic and driver ground - | 22 | NC | No Connection (Reserved for LCD test) | - | | · · · | 23 | GND | LCD logic and driver ground | - | | 25 GND LCD logic and driver ground - | 24 | GND | LCD logic and driver ground | - | | | 25 | GND | LCD logic and driver ground | - | ### PRODUCT SPECIFICATION | 26 | GND | LCD logic and driver ground | - | |----|----------|---------------------------------------|---| | 27 | HPD | HPD signal pin | - | | 28 | BL_GND | Backlight ground | - | | 29 | BL_GND | Backlight ground | - | | 30 | BL_GND | Backlight ground | - | | 31 | BL_GND | Backlight ground | - | | 32 | LED_EN | Backlight on /off | | | 33 | LED_PWM | System PWM signal input for dimming | - | | 34 | NC | No Connection (Reserved for LCD test) | - | | 35 | NC | No Connection (Reserved for LCD test) | - | | 36 | LED_VCCS | Backlight power | - | | 37 | LED_VCCS | Backlight power | - | | 38 | LED_VCCS | Backlight power | - | | 39 | LED_VCCS | Backlight power | - | | 40 | NC | No Connection (Reserved for LCD test) | - | Note (1) The first pixel is odd as shown in the following figure. PCBA Note (2) The setting of BIST function are as follows. | Pin | Enable | Disable | |---------|--------|------------| | BIST_EN | Hi | Lo or Open | Hi = High level, Lo = Low level. #### 4.3 ELECTRICAL CHARACTERISTICS #### 4.3.1 LCD ELETRONICS SPECIFICATION | Parameter | | Symbol | | Value | | Unit | Note | |----------------------------|------------|----------------------|------|--------|-------|-------|---------| | Farameter | | Symbol | Min. | Тур. | Max. | Offic | Note | | Power Supply Voltage | | VCCS | 3.0 | 3.3 | 3.6 | V | (1) | | HPD | High Level | - | 2.25 | - | 2.75 | V | (6) | | | Low Level | - | 0 | - | 0.4 | V | (6) | | HPD Impedance | | R _{HPD} | 30K | - | | ohm | (5) | | Ripple Voltage | | V_{RP} | - | - | 100 | mV | (1) | | CABC EN Input Voltage | High Level | V_{IHCABC} | 2.3 | - | 3.6 | V | (5) | | CABC_EN Input Voltage | Low Level | V_{ILCABC} | 0 | - | 0.5 | V | (5) | | CABC_EN Impedance | | R _{CABC_EN} | 30K | 4 | - | ohm | (5) | | Inrush Current | | I _{RUSH} | - | | 1.5 | Α | (1),(2) | | Dower Supply Current | Mosaic | loo | - | (450) | (500) | mA | (3)a | | Power Supply Current Black | | lcc | - | (445) | (490) | mA | (3) | | Power per EBL WG | <u>.</u> | P _{EBL} | - | (2.59) | - | W | (4) | | Heavy Loading Pattern | | lcc | - | - | (900) | mA | | Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C. Note (2) I_{RUSH}: the maximum current when VCCS is rising I_{IS}: the maximum current of the first 100ms after power-on Measurement Conditions: Shown as the following figure. Test pattern: black. #### VCCS rising time is 0.5ms Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a specified power dissipation check pattern is displayed. #### a. Mosaic Pattern Active Area - Note (4)
The specified power are the sum of LCD panel electronics input power and the converter input power. Test conditions are as follows. - (a) VCCS = 3.3 V, Ta = $25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,\text{Hz}$, - (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt. - (c) Luminance: 60 nits - Note (5) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information. - Note (6) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action ### PRODUCT SPECIFICATION #### 4.3.2 LED CONVERTER SPECIFICATION | Parar | motor | Symbol | | Value | | Unit | Note | |---------------------------------------|-------------------|----------------------|-------|--------|----------|-------|------| | Faiai | netei | Syllibol | Min. | Тур. | Max. | Offic | Note | | Converter Input pow | er supply voltage | LED_Vccs | (8) | (12.0) | (21.0) | V | - | | Converter Inrush Current | | ILED _{RUSH} | - | - | (1.5) | A | (1) | | LED_EN Control | Backlight On | | (2.2) | - | (5) | V | (4) | | Level | Backlight Off | - | (0) | - | (0.6) | V | (4) | | LED_EN Impedance |) | R _{LED_EN} | (30K) | - | - | ohm | (4) | | PWM Control Level | PWM High Level | | (2.2) | - | (5) | V | (4) | | F WWW CONTROL Level | PWM Low Level | - | (0) | | (0.6) | V | (4) | | PWM Impedance | | R _{PWM} | (30K) | | <u>-</u> | ohm | (4) | | PWM Control Duty F | Ratio | - | (5) | | (100) | % | (5) | | PWM Control Permissive Ripple Voltage | | VPWM_pp | - | - | (100) | mV | - | | PWM Control Frequency | | f _{PWM} | (190) | - | (2K) | Hz | (2) | | LED Power Current | LED_VCCS =Typ. | ILED | (807) | (933) | (969) | mA | (3) | Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising, ILED_{IS}: the maximum current of the first 100ms after power-on, Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%. LED_VCCS(Typ) Q1 IRL3303 FUSE C3 (LED Converter Input) (Control Signal) SW=24V LED_VCCS(Typ) VR1 47K C2 IRL3303 #### VLED rising time is 0.5ms Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below. PWM control frequency f_{PWM} should be in the range $$(N+0.33)*f \le f_{\mathsf{PWM}} \le (N+0.66)*f$$ $N: \mathsf{Integer} \ (N \ge 3)$ $f: \mathsf{Frame} \ \mathsf{rate}$ - Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%. - Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept. Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed. ### PRODUCT SPECIFICATION #### 4.3.3 BACKLIGHT UNIT Ta = 25 ± 2 °C | Doromotor | Cumbal | | Value | | Linit | Note | |---------------------------------------|--------|-------|--------|--------|-------|-------------------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | | LED Light Bar Power
Supply Voltage | VL | 33 | 33.9 | 35.4 | V | (1)(2)(Dut)(1000) | | LED Light Bar Power
Supply Current | lL | - | (270) | - | mA | (1)(2)(Duty100%) | | Power Consumption | PL | - | (9.15) | (9.56) | W | (3) | | LED Life Time | L_BL | 15000 | - | - | Hrs | (4) | Note (1) LED current is measured by utilizing a high frequency current meter as shown below: Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar. Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency) Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = (27)mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value. #### 4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS #### 4.4.1 ELECTRICAL SPECIFICATIONS | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|--------------|------|------|------|------|--------| | Differential Signal Common Mode Voltage(MainLink and AUX) | VCM | 0 | - | 2 | V | (1)(4) | | AUX AC Coupling Capacitor | C_Aux_Source | 75 | - | 200 | nF | (2) | | Main Link AC Coupling Capacitor | C_ML_Source | 75 | - | 200 | nF | (3) | Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us. (2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor (C_Aux_Source) should be placed on the source device. (3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device. (4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1 ### PRODUCT SPECIFICATION #### 4.4.2 COLOR DATA INPUT ASSIGNMENT The brightness of each primary color (red, green and blue) is based on the **8-bit** gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input. | | | | | | | | | | | | | D | | Sig | nal | | | | | | | | | | | |--------|---------------|----|----|----|----|----|----------|----|----|----|----|-----|-----|-----|------|----|----|----|----|----|----|----|----|----|----| | | Color | | | | Re | | | | | | | | Gre | | | | | | | | Bl | | | | | | | T= . | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | | | Black | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Red(0)/Dark | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | | : | | 7 | :) | 7: | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | : | : | : | : | : | · · | : | : | _: / | : | : | : | : | : | : | : | : | : | : | | Red | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | | : | | : | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | | • | | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Green | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0)/Dark | 0 | | | Blue(1) | 0 | 1 | | Gray | Blue(2) | 0 | 1 | 0 | | Scale | : | : | | : | : | : | <u>;</u> | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | · | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Blue | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1) 0: Low Level Voltage, 1: High Level Voltage ### PRODUCT SPECIFICATION #### 4.5 DISPLAY TIMING SPECIFICATIONS The input signal timing specifications are shown as the following table and timing diagram. #### Refresh rate 60Hz | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |--------|-----------------------------------|--------|--------|--------|--------|------|------| | DCLK | Frequency | 1/Tc | 530.61 | 533.28 | 535.95 | MHz | - | | | Vertical Total Time | TV | 2218 | 2222 | 2226 | TH | - | | | Vertical Active Display Period | TVD | 2160 | 2160 | 2160 | TH | - | | DE | Vertical Active Blanking Period | TVB | TV-TVD | 62 | TV-TVD | TH | - | | | Horizontal Total Time | TH | 3980 | 4000 | 4020 | Tc | - | | | Horizontal Active Display Period | THD | 3840 | 3840 | 3840 | Tc | - | | | Horizontal Active Blanking Period | THB | TH-THD | 160 | TH-THD | Tc | - | #### **INPUT SIGNAL TIMING DIAGRAM** ### PRODUCT SPECIFICATION #### 4.6 POWER ON/OFF SEQUENCE The power sequence specifications are shown as the following table and diagram. ### PRODUCT SPECIFICATION #### **Timing Specifications:** | Parameter | Description | Reqd. | Val | | Unit | Notes | |-----------|--|--------------|--------------|-------------|------|---| | t1 | Power rail rise time, 10% to 90% | By
Source | Min
(0.5) | Max
(10) | ms | | | t2 | Delay from LCD,VCCS to black video generation | Sink | (0.3) | (200) | ms | Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below) | | t3 | Delay from LCD,VCCS to HPD high | Sink | (0) | (200) | ms | Sink AUX Channel
must be operational
upon HPD high (see
Note:4 below) | | t4 | Delay from HPD high to link training initialization | Source | (0) | - | ms | Allows for Source to read Link capability and initialize | | t5 | Link training duration | Source | (0) | - | ms | Dependant on Source link training protocol | | t6 | Link idle | Source | (0) |)- | ms | Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization | | t7 | Delay from valid video data from
Source to video on display | Sink | (0) | (50) | ms | Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video | | t8 | Delay from valid video data from Source to backlight on | Source | (80) | - | ms | Source must assure display video is stable *: Recommended by INX. To avoid garbage image. | | t9 | Delay from backlight off to end of valid video data | Source | (50) | - | ms | Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image. | | t10 | Delay from end of valid video data from Source to power off | Source | (0) | (500) | ms | Black video will be
displayed after
receiving idle or off
signals from Source | | t11 | VCCS power rail fall time, 90% to 10% | Source | (0.5) | (10) | ms | - | | t12 | VCCS Power off time | Source | (500) | - | ms | - | |----------------|--|--------|-------|------|----|--------------------------| | t13 | Delay from LCD,VCCS to PSR_EN high | Source | (0) | (5) | ms | PSR function select time | | t _A | LED power rail rise time, 10% to 90% | Source | (0.5) | (10) | ms | - | | t _B | LED power rail fall time, 90% to 10% | Source | (0) | (10) | ms | - | | t _C | Delay from LED power rising to LED dimming signal | Source | (1) | - | ms | - | | t_D | Delay from LED dimming signal to LED power falling | Source | (1) | - | ms | <u> </u> | | t _E | Delay from LED dimming signal to LED enable signal | Source | (0) | - | ms | - | | t _F | Delay from LED enable signal to LED dimming signal | Source | (0) | _ | ms | - | - Note (1) Please don't plug or unplug the interface cable when system is turned on. - Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions: - Upon LCDVCC power-on (within T2 max) - When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9) - Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes. - Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max. The panel's HPD may go high following LCDVCC(VCCS) power-on and goes low within 10ms, then the HPD stays low longer than 2ms. So, it must be regarded as a Hot-Plug/Unplug-Event. According to Section 5.1.4 of "VESA DisplayPort Standard", the source must read the link / sink status field and receiver capability field of the DPCD and re-train the link. ### PRODUCT SPECIFICATION #### 5. OPTICAL CHARACTERISTICS #### **5.1 TEST CONDITIONS** | Item | Symbol | Value | Unit | |-----------------------------|------------------------|------------------------|------------------| | Ambient Temperature | Та | 25±2 | °C | | Ambient Humidity | На | 50±10 | %RH | | Supply Voltage | V _{cc} | 3.3 | V | | Input Signal | According to typical v | alue in "3. ELECTRICAL | CHARACTERISTICS" | | LED Light Bar Input Current | Ι _L | (270) | mA | The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5). #### **5.2 OPTICAL SPECIFICATIONS** | Ite | m | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | |------------------|----------------|------------------|--|-------|---------|-------|-------------------|------------------| | Contrast Ratio | | CR | | 4 | 1200 | - | ı | (2),
(5),(7) | | Bosponso Timo | | T_R | | | (16) | (19) | ms | (2) (7) | | Response Time | ; | T_{F} | | - | (14) | (16) | ms | (3),(7) | | Average Lumina | ance of White | Lave | | (510) | (600) | - | cd/m ² | (4),
(6) ,(7) | | | Dod | Rx | | | (0.640) | | - | | | | Red | Ry | $\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$ | | (0.330) | | - | | | | Croon | Gx | Viewing Normal Angle | | (0.210) | | - | | | Color | Green | Gy | | Тур – | (0.710) | Typ + | - | (1) (7) | | Chromaticity | Blue | Вх | | 0.03 | (0.150) | 0.03 | - | (1),(7) | | Chilomaticity | blue | Ву | | | (0.060) | | - | | | | White | Wx | | | (0.313) | | - | | | | VVIIILE | Wy | | | (0.329) | | - | | | | Color Gamut | C.G. | | - | 95.5 | - | - | (8) | | | Horizontal | θ_x + | | 80 | 89 | - | | | | Violeina Analo | Honzontal | θ_{x} - | CD>10 | 80 | 89 | - | Dog | (1),(5), | | Viewing Angle | Vertical | θ_{Y} + | CR≥10 | 80 | 89 | - | Deg. | (7) | | | Angle Vertical | θ _Y - | | 80 | 89 | - | | | | White Variation | | δW _{5p} | θ _x =0°, θ _Y =0° | - | - | 1.25 | % | (5),(6), | | vville variation | | δW13p | θx=0°, θY =0° | - | 1.4 | 1.6 | % | (7) | Note (1) Definition of Viewing Angle (θx , θy): Note (2) Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression. Contrast Ratio (CR) = L63 / L0 L63: Luminance of gray level 63 L 0: Luminance of gray level 0 CR = CR(1) CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6). Note (3) Definition of Response Time (T_R, T_F): Note (4) Definition of Average Luminance of White (LAVE): Measure the luminance of gray level 63 at 5 points $$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$ L(x) is corresponding to the luminance of the point X at Figure in Note (6) #### Note (5) Measurement Setup: The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room. #### Note (6) Definition of White Variation (δW): Measure the luminance of gray level 63 at 5 points $\delta W_{5p} = \{Maximum [L (1) \sim L (5)] / Minimum [L (1) \sim L (5)]\}*100\%$ $\delta W_{13p} = \{Maximum [L (1) \sim L (13)] / Minimum [L (1) \sim L (13)]\} *100\%$ Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted. ### PRODUCT SPECIFICATION Note (8) Definition of color gamut (C.G%): C.G%= Area (R, G, B) / Area (R₀, G₀, B₀,)* 100% R_0 , G_0 , B_0 : CIE1931 coordinates of red, green, and blue defined by NTSC. R, G, B: CIE1931 coordinates of red, green, and blue in module at 255 gray level. Area (R_0, G_0, B_0) : Area of the triangle defined by coordinate R0, G0, B0. Area(R, G, B): Area of the triangle defined by coordinate R, G, B ### PRODUCT SPECIFICATION #### 6. RELIABILITY TEST ITEM | Test Item | Test Condition | Note |
---|---|---------| | High Temperature Storage Test | 60°C, 240 hours | | | Low Temperature Storage Test | -20°C, 240 hours | | | Thermal Shock Storage Test | -20°C, 0.5hour ←→60°C, 0.5hour; 100cycles, 1hour/cycle | | | High Temperature Operation Test | 50°C, 240 hours | (1) (2) | | Low Temperature Operation Test | 0°C, 240 hours | () () | | High Temperature & High Humidity Operation Test | 50°C, RH 80%, 240hours | | | ESD Test (Operation) | 150pF, 330 Ω , 1sec/cycle Condition 1 : Contact Discharge, \pm 8KV Condition 2 : Air Discharge, \pm 15KV | (1) | | Shock (Non-Operating) | 220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z | (1)(3) | | Vibration (Non-Operating) | 1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z | (1)(3) | Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect. Note (2) Evaluation should be tested after storage at room temperature for more than two hour Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. ### PRODUCT SPECIFICATION #### 7. PACKING #### 7.1 MODULE LABEL The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. - (a) Model Name: N156DCE GN2 - (b) Revision: Rev. XX, for example: C1, C2 ...etc. - (d) Production Location: MADE IN XXXX. - (e) UL Logo: XXXX or XXXXX is UL factory ID. Serial ID includes the information as below: (a) Manufactured Date: Year: 0~9, for 2010~2019 Month: 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U - (b) Revision Code: cover all the change - (c) Serial No.: Manufacturing sequence of product - (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc. ### PRODUCT SPECIFICATION (for Common) #### 7.2 CARTON - (1) Box Dimensions : 500(L)*370(W)*270(H) (2) 20 modules/Carton Figure. 7-1 Packing method #### 7.3 PALLET Figure. 7-2 Packing method #### 7.4 UN-PACKAGING METHOD Figure. 7-3 Un-Packing method ### PRODUCT SPECIFICATION #### 8. PRECAUTIONS #### 8.1 HANDLING PRECAUTIONS - (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module. - (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer. - (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process. - (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched. - (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction. - (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time. - (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap. - (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC. - (9) Do not disassemble the module. - (10) Do not pull or fold the LED wire. - (11) Pins of I/F connector should not be touched directly with bare hands. - (12) Do not re-attach protective film onto the polarizer because of risk of bubble mura and dust. #### **8.2 STORAGE PRECAUTIONS** - (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions. - (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating. - (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature. #### **8.3 OPERATION PRECAUTIONS** - (1) Do not pull the I/F connector in or out while the module is operating. - (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up. - (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit. ### PRODUCT SPECIFICATION #### Appendix. EDID DATA STRUCTURE The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards. | Byte # | Byte # | Sispiay and Fr Di Standards. | Value | \/alue | |---------------------|----------|------------------------------|--|-------------------| | Byte #
(decimal) | (hex) | Field Name and Comments | (hex) | Value
(binary) | | TBD | (11011) | | (4.04.) | (44, 141, 17) | | .55 | | | | | | | | | | | | | <u> </u> | | | | | <u> </u> | <u> </u> | - | | | | | | | | | | | | | | | | | | _ | | | | | | | | <u> </u> | - | - | | | | | | | | | | | | | | | | ### PRODUCT SPECIFICATION | 1T 10170 48 | | | |-------------|---------------|--| 4.17 F | V | Version 1.0 6 September 2017 31 / 47 ### PRODUCT SPECIFICATION | .4 | | | |----|--|--| | | | | | | | | | | | | Version 1.0 6 September 2017 32 / 47 #### **Appendix. OUTLINE DRAWING** - NOTES: 1. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SOPT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC/COF, T-CON AND VR LOCATIONS. 2. LVDS/EDP CONNECTOR IS MEASURED AT PIN 1 AND ITS MATING LINE. 3. MODULE FLATNESS SPEC (0.5mm) MAX. (SPEC WILL BE MODIFIED AFTER DVT CHECK). 4. "()" MARKS THE REFERENCE DIMENSION. #### Appendix. SYSTEM COVER DESIGN NOTICE ### PRODUCT SPECIFICATION - To prevent panel damage, we suggest using CCD FPC to replace CCD cable - Using double tape to fix LCM module for no bracket design. If the antenna cable or Web Cam wire must overlap with the panel outline, both sides of the antenna cable or Web Cam wire must have a sponge(Sponge material can not contain NH3) and sponge require higher antenna cable or Web Cam wire.(Antenna cable or Web Cam wire should not overlap with TCON,COF/FPC,Driver IC) Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference 5 System rear-cover inner surface examination Definition Burr at logo edge, steps, protrusions or PCB board may cause stress concentration. White spot or glass broken issue may occur during reliability test. 6 Tape/sponge design on system inner surface Definition For using in Touch Application: to prevent White Line appears between TP and LCD module combination, the maximum inspection angle location must not fall onto LCD polarizer edge, otherwise light line near edge of polarizer will be appear. Parameters such as TP VA to LCD AA distance, TP assembly tolerance, TP Ink printing tolerance, Sponge thickness and tolerance, and Maximum Inspection/Viewing Angle, must be considered with respect to LCD module's Polarizer edge location and tolerance. This consideration must be taken at all four edges separately. The goal is to find parameters combination that allow maximum inspection angle falls inside polarizer black margin area. Note: Information for Polarizer edge location and its tolerance can be derived from INX 2D Outline Drawing ("AA ~Outline" - "CF Pol~Outline"). Note: Please feel free to contact INX FAE Engineer. By providing value of parameters above on each side, we can help to verify and pass the white line risk assessment for customer reference. | ppendix. L | CD MODULE HANDLI | NG MANUAL | | | | | |------------|---|-------------------|--------------------|--|--|--| | Purpose | This SOP is prepared to prevent panel dysfunction possibility through incorrect handling procedure. This manual provides guide in unpacking and handling steps. Any person which may contact / related with panel, should follow guide stated in this manual to prevent panel loss. | | | | | | | 1. | Unpacking | | | | | | | | | Open carton | Remove EPE Cushion | Open | plastic bag | Cut Adhesive Tape | Remove EPE Cushion | | | | | 2. | Panel Lifting | | | | | | ####
Remove PET Cover Remove PE Foam Handle with care (see next page) Finger Slot Use slots at both sides for finger insertion. Handle panel upward with care. 3. Do and Don't #### Do: - Handle with both hands. - Handle panel at left and right edge. ### Don't: Lifting with one hand. Handle at PCBA side. #### Don't: Stack panels. - Press panel. #### Don't: - Put foreign stuff onto panel - Put foreign stuff under panel #### Don't: Paste any material unto white reflector sheet #### Don't: Pull / Push white reflector sheet #### Don't: · Hold at panel corner. #### Don't: Twist panel. #### Do: Hold panel at top edge while inserting connector. #### Don't: Press white reflector sheet while inserting connector. ### PRODUCT SPECIFICATION #### Do: Remove panel protector film starts from pull tape ### Don't: Remove panel protector film From film another side. #### Don't: Touch or Press PCBA Area.